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Abstract. When a tunnel is subjected to transport loads (loads from the moving
transportation within it), vibrations occur in the tunnel lining and the surrounding
massif. Traditional quasi-static methods do not account for the dynamic behavior of
tunnel structures. Therefore, this paper aims to develop a dynamic calculation method
using modern mechanics. The purpose of this paper is to develop such a method. The
relevance of the research in this article is due to the trend of increasing the speed of
vehicles in recent years. This paper considers an unsupported and lined circular
cylindrical shallow tunnel. The tunnel is modeled as an extended circular cylindrical
cavity or reinforcing shell located in an elastic half-space. The surface of the cavity or
the inner surface of the shell is subjected to a normal load (the effect of the pressure of
a moving object on the tunnel) and a tangential load parallel to this axis (the effect of
the friction forces of a moving object on the tunnel) moving uniformly along its axis.
The motion of the half-space and the shell are described by the dynamic equations of
elasticity theory and the equations of classical shell theory, respectively, in moving
coordinate systems. The integral Fourier transform method is used to solve the
problem. In the case of moving axisymmetric normal and axial tangential loads acting
on the tunnel, a numerical study of the influence of the tunnel lining on the stress-
strain state of the ground surface is carried out.
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FbIJIbIMN MAKAJIACBI

TOHHEJIb KAIITAMACBIHBIH KOJIIK )KYKTEMEJIEPI
KE3IHJE KEP BETIHIH PEAKIIUACBIHA 9CEPI

C.P. Tupuuc * @ | B.H. Yxpaunen ¥, )K.0. Orap6aes? ¥, JI.B. lNopuikosa *

1TopaﬁfblpOB yauBepcuteTi, [TaBnonap, 140008, Kazakctan
2KP ¥ aTThIK MHXeHep ik akagemusicel, Anmarsl, 050010, Kazakcran

Annarna. Tounenvee KoK dcykmemenepi (MOHHeNbOe KO32ANAMbIH KOJIIKMIH
HeMece 032e 0e 00beKMIHIK HCyKmemenepi) acep emken Ke30e OHblH KAnmamdacblHblH
JiCOHe Kopuiazan maccusmiy Oipinoepi natioa 601advl. ToHHenb KYpuliblMOAPbIHbLY
KoK JHcykmemenepin ecenmey YuliH KOJNOAHbIAAMbIH WAMAMEH KEA3UCTAMUKATIbIK
a0ic  onapovly  OUHAMUKATLIK — KYlU-032epicmiy — epeKuleikmepin — eckepmelioi.
Conovikman,  Mexamuxawvly  3amMaHayu  KepiHicmepiH  KOIOAHA — OMbIPbIn,
MaAMemMamuKaivly mooenvoepee He2iz0en2eH 0Cbl KOHCMPYKYUIapovl OUHAMUKALBIK
ecenmeyOiy bapabap 20icmepi Kasxcem. ¥CbIHbLIZAH MAKALIAHBIY MAKCAmMbl - OCbl
a0icmi a3ipney 6onvin maowvliadvl. byn maxanada xkanmamamen Oeximiimeeen dHcaue
Oeximineen O6H2eNeK YUTUHOPIIK MOHHENb Kapacmulpbliadvl. TouHenb cepnimoi
JoHcapmoliail Keyicmikme OpHANACKAH Y3apmbuli2aH 00H2eNeK YUTUHOPIIK KyblC Hemece
OHbl Kyweumemin KaOvlk mypiHoe MmooenvoeHedi. Kyvicmuvly 6emine nemece
KabOvikmoly [WKI Oemine OHbIY OCI OOUbIMEH OIpKeNKi KO032aNambvlH Kalblnmbl
oHcykmeme (KO38anamulH 3amMman KblCblM MYHHENIHe acep emy) HCoHe OCbl OCbKe
napannenvoi JAcaHama Hcykmeme (KO32aiamvlH 3amman  YUkKenic KyumepiHiy
myHHenine acep emy) acep emeodi. JKapmuinail kenicmix nen KaOblKmbiy KO32a1bIChl,
catikecinule, CepniMoOiNiK MeoOPUsCbIHblY OUHAMUKAILIK MeHOeyl1epIMer  JiCoHe
HCHLIHCHIMATILL  KOOPOUHAM  JcylieNiepindedi KIacCUKAnblK KaOulK mMeopusiCblHblH
meHOoeynepimen cunammanaovl. Moaceneni wewy ywin unmezpanovl Dypve
mypaeHoipy 20ici Koi0ausliaovl. Kanvinmol dcane ocomix maneenc HcyKmemenepiniy
KO32aIMAJIbl OCbMIK CUMMEMPUSAIbI MOHHENb2e dcep emKeH Hagoauod, MOHHEelb
KanmamacwulHsly dicep Oeminiy KepHeyli 0ehopMayusiianzan KyuiHe acepi CAHObIK
3epmmey Jcypeizindi. Ecenmey namuoicenepin manidayoan moHHeib0i KanmamameH
HbleQUmMy  KOJNIK  JCyKmemelepiniy — dcep  Oemine  OUHAMUKANLIK — ICEPIHiY
aumapavikmai meomenoeyine aKelemini uvl2apuliovl.

Tyitin ce3mep: moHHeb, cepnimii Hcapmoliail KeHiCmiK, YUIUHOPIIK KAaOblK,
MacvIManoay HCyKmemeci, Ko3aivblcmap, Kepreyiep.
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HAVUYHAS CTATBS

BJUSIHUE OBJEJ KU TOHHEJS HA PEAKIIMIO 3BEMHOHN
IHOBEPXHOCTMU ITPU TPAHCIIOPTHBIX HAT'PY3KAX

C.P. Tupuuc *%® | B.H. Ykpaunnen ! ¥  7)K.0. Orapéaes? ¥ | JI.B. T'opmkosa !

Topaiirsipos yuusepcurer, [Tanonap, 140008, Kazaxcran
2 HanmonassHas nmwkeHepHas akagemusi PK, Anmvarsi, 050010, Kazaxcran

AnHoTaums. [lpu 6o030eticmeuu Ha MOHHENb MPAHCHOPMHLIX HACPY30K
(Hazpy30oKk om 08udNCYWe20cs 6 MmOHHeNe MPAHCHOPMA U UHO20 00beKkma)
B03HUKAIOM BUOpayuu e2o 000eiKu U OKpyJcanuwe2o maccusd. Mcnonvzyemovlii 0s
pacuemos Ha MPAHCNOPMHbIE HAZPY3KU KOHCMPYKYUL MOHHeNeU NPUOTUNCEHHbIN
K6A3UCMAMUYECKULl Memoo He Yuyumvléaem O0COOEHHOCMU UX OUHAMUYECKO20
nosedenus. 110amomy nHeobxooumvl adeksamHuvle Memoobl OUHAMUYECKUX PACUEMO8
OAHHBIX ~ KOHCMPYKYULl, — OCHOBAHHblE — HA  MAMEMAMU4ecKux  MOOeusixX ¢
UCNONb308AHUEM COBPEMEHHLIX Npedcmasienull mexanuxu. Llenvio npeocmasnennotl
cmamvu A615emcs pazpabomka 00HO20 U3 MAKUX Memooos. B oannou cmamve
paccmampusaemcst HenoOKpPenJieHHulll U  NOOKPenjieHHvlll  000enKol  Kpyeosol
YUTUHOPUYECKUTI MOHHENb MeIK020 3anodxcenus. TOHHenb modenupyemcs 8 6uoe
PACNONONCEHHOU 8  YNpYeOM  NONYNPOCMPAHCIEE  NPOMANCEHHOU  KPY2080ll
YUTUHOPUYECKOU NOoAOCmu ulu nookpenisioweti ee obonouku. Ha nosepxnocmo
NONOCMU UMY HA 6HYMPEHHIOI NOBEPXHOCMb 00O0JIO0UKU OelCm8yIom pAGHOMEPHO
osudicyuuecs 8001b ee 0CU HOPMANbHASL HASPY3Ka (Oelicmeue Ha MOHHELb 0A61eHUs.
om osudxcyujeeocsi 06veKkma) u napanlenvbHas Mol OCU KACamenbHas Hacpy3Kd
(Oeticmsue Ha MOHHENb CUL MPeHUs Om O8uICywe2ocs obvekma). [lsudicenue
NOLYRPOCMPAHCMEA U 0DOJOUKU ONUCBIBAIOMCS COOMBEMCMBEHHO OUHAMUYECKUMU
VDABHEHUAMU MeopUU YNPY2OCmu U YPAGHEHUAMU KIACCUYECKOl meopuu 000104YeK 8
NOOBUIICHLIX CcUCeMAX KoopouHam. [{ia pewieHus 3a0ayu UCHONb3Yemcs Memoo
unmezpanvbHo2o npeobpasosanus Dypve. B cayuae Oelicmeusi Ha MOHHENb
OBUINCYWYUXCS OCECUMMEMPUYHBIX HOPMAILHOU U O0CEBOU KACAMENbHOU HASPY30K
NPOBeOeHO YUCIEHHOEe UCCIe008aHue GusHUe 000elKU MOHHENS HA HANPAHCEHHO-
0ehopMupoBanHoe cocmosiHue 3eMHOU NOBEPXHOCTILL.
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1 INTRODUCTION

To date, many complex projects of transport tunnels have been created and implemented, and
various analytical and numerical methods have been developed to calculate their structures for
various types of loads and impacts (Hrapov et al., 1989). All this is based on the currently existing
design standards for underground structures, which practically do not take into account the speed of
transportation or other objects moving in the tunnel, and poorly consider the interaction of its lining
with the surrounding massif. Therefore, the calculation of tunnel structures on this basis is very
approximate. Since, as it is known from the practice of tunnel operation, at high speed of transport
load there is a significant increase of vibration of their structures, adequate methods of dynamic
calculation of these structures for transport load, based on mathematical models using modern
concepts of mechanics, are required. This paper is devoted to the development of such a method.

When a tunnel supported by a homogeneous cylindrical lining is dynamically designed for
transport loads, its design scheme is usually represented as an extended cylindrical shell in an
elastic medium. A load (transport load) moving along its axis acts on the inner surface of the shell.
The shell is considered in an unbounded medium (elastic space) if the tunnel is deep. However, if it
is shallow, it is considered in a medium bounded by a plane parallel to the axis of the shell (elastic
half-space).

The problem of the action of a moving normal load on a thin-walled cylindrical shell in elastic
space (a model problem for a deeply buried tunnel) was solved in (Pozhuev & Lvovskij, 1976). A
similar model problem for a shallow buried tunnel is considered in (Ukrainets, 2006). Here, a
comparative analysis of the stress-strain state (SSS) of the rock mass in the vicinity of an
unsupported and supported by a cylindrical lining shallow tunnel under the action of normal
transport load is carried out. Due to the fact that the vehicle (or other object) moving along the
tunnel, which transfers the normal compressive load to its surface, can have a significant influence
on it by friction in the axial direction, (for example, when the wheels of a rolling stock car jam), it is
necessary to perform a similar to (Ukrainets, 2006) study in the case of their joint action. The
results of such a study are presented in this paper.

2 LITERATURE REVIEW

Many works are devoted to the study of the dynamics of extended underground structures
under the action of various disturbances. A rather detailed bibliography on this subject can be found
in the monographs of Zh.S. Erzhanov, Sh.M. Ajtaliyev, (Yerzhanov & Ajtaliev, 1989), Sh.M.
Ajtaliyev, L.A. Alekseeva, Sh.M. Dildabayev, N.B. Zhanbyrbayev (Ajtaliev et al., 1992) and in the
review article of Sh.M. Ajtaliyev (Ajtaliev, 2004).

The spatial problems of radiation and reflection of elastic waves during the motion of
pulsating loads along a tunnel laid in the ground were considered by M.A. Dashevsky (Dashevskij,
1971a), (Dashevskij, 1971b). Here, a beam of annular non-deformable cross-section located in
elastic space was taken as the design scheme of the tunnel lining. The solution of the problems was
constructed in the form of series for scalar and vector potentials. Subsequent articles of
M.A. Dashevsky (Dashevskij, 1974), (Dashevskij, 1982) are devoted to the question of
determining the level of ground vibrations in the vicinity of the subway track. In (Dashevskij,
1974), a plane problem of elasticity theory was investigated for a half-plane with a hole. A more
precise approach is proposed in (Dashevskij, 1982). Here, the problem of the response of an elastic
half-space containing a cavity supported by a cylindrical shell to a pulsating load moving along the
shell axis was solved using the reflected source method. Since the method does not allow satisfying
the boundary conditions on the free surface of the half-space, the solution of the problem about the
normal load moving along the surface of the half-space is used to refine the solution. The paper
proposes an iterative process using these two solutions to obtain the exact solution.

An exact solution of the problem of elasticity theory about an axisymmetric normal load
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moving along the inner surface of a homogeneous shell located in a boundless elastic medium with
a constant subsonic velocity (lower than the shear wave propagation velocities in the shell and the
medium) was obtained by V.M. Lvovsky, V.l. Onishchenko and V.l. Pozhuyev (Lvovsky et al.,
1974). Here, the motions of the shell and the medium were described by the dynamic equations of
elasticity theory, and the Fourier integral transformation on the axial moving coordinate was used in
the solution. The contact between the shell and the medium was assumed to be sliding. The solution
is obtained when the load velocity is less than its critical velocity. In a simplified formulation, when
the shell motion is described by approximate equations of the shell theory (classical and
Timoshenko type), the solution of the problem (Lvovsky et al., 1974) was obtained by
V.I. Pozhuyev and V.M. Lvovsky (Pozhuev & Lvovskij, 1976). It was found that if the ratio of the
thickness of the shell to the radius of its median surface is less than 0.05, then in this case we can
use the classical shell theory as the simplest one. It was found that if the ratio of the thickness of the
shell to the radius of its median surface is less than 0.05, then in this case the classical shell theory
can be used as the simplest one. This position was reflected in further studies of V.l. Pozhuyev
(Pozhuev, 1978), (Pozhuev, 1980).

The action of a load arbitrarily dependent on axial and angular coordinates on the inner
surface of a thin-walled shell located in elastic space and moving along its axis at a constant
subsonic velocity (less than the velocity of shear wave propagation in elastic space) was considered
in (Ukrainets & Girnis, 2005), (Ukrainets & Girnis, 2006), (Girnis, 2009). Here, the motion of
the elastic space was described by the dynamic equations of elasticity theory in Lamé potentials,
and the shell vibrations were described by the classical equations of shell theory. The equations
were represented in a moving cylindrical coordinate system that moved with the load. Initially, an
arbitrary load moving in the circumferential direction was assumed to be sinusoidal along the shell
axis. The method of incomplete separation of variables was used to solve this problem. The Lamé
potentials were represented as the Fourier-Bessel series. The unknown coefficients were determined
from the boundary conditions. The obtained solution was then used to solve the problem of the
action of a moving load on the given shell, which has no periodicity but is represented as a Fourier
integral. As a result, a steady-state solution of the problem was obtained for precritical load
velocities. A similar solution of the model problem for a shallow transport tunnel is presented in
(Alekseeva & Ukrainets, 2009), where the effect of waves reflected from the ground surface,
resulting from the movement of the loads on the tunnel lining and the surrounding massif, is
additionally taken into account.

In this paper, in contrast to (Alekseeva & Ukrainets, 2009), the integral Fourier transform of
the axial moving coordinate is used to solve the problem, which allows us to consider the load
distributed along the axis of the cavity or the supporting shell according to an arbitrary law and to
obtain the final solution expressions without summation at once.

3 MATERIALS AND METHODS

The study uses the method of mathematical modeling with the involvement of models and
equations from the theory of elasticity. The design scheme of a shallow transport tunnel is
considered as an extended circular cylindrical cavity located in an elastic half-space (for an
unsupported tunnel) or a supporting shell (for a tunnel supported by a circular cylindrical lining).
The surface of the cavity or the inner surface of the shell is subjected to a normal load (the effect of
the pressure of a moving object on the tunnel) and a tangential load parallel to this axis (the effect
of the friction forces of a moving object on the tunnel) moving uniformly along its axis. It is
assumed that the load functions can be decomposed into a Fourier series in the angular coordinate
and a Fourier integral in the axial coordinate. The motion of the shell is described by the classical
equations of shell theory, and that of the elastic half-space by the dynamic equations of elasticity in
the Lamé potentials, for the solution of which the method of Fourier integral transformation in the
axial moving coordinate is used.
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4 RESULTS AND DISCUSSION

4.1 FORMULATION AND ANALYTICAL SOLUTION OF THE PROBLEM

Considering two design schemes for the tunnel (Figure 1).

X X X r
ey
= o 0
R
z n y
0 0 0
ct -
(@)
X X X r
- |€
o
=
R 0
z M y
0 0 0
ct -
Bz 2z == == ==
(b)

Figure 1 — Design schemes of tunnels: (a) unsupported and (b) supported by a thin-walled (authors’ materials).

In the first design scheme for the tunnel, a linear-elastic, homogeneous, and isotropic half-
space (massif) in a cylindrical 1,6,z and Cartesian x,y,z coordinate system that remains
unchanged in its position was considered. The half-space, with its horizontal boundary (ground
surface) free from loads, contains an extended circular cylindrical cavity with a radius of R. The
axis of the cavity coincides with the z-axis, which is parallel to the boundary of the half-space. The
x-axis is perpendicular to this boundary of the half-space: x<h (h > R) , Where h represents the
depth of the tunnel embedding (Figure 1 (a)). In the second design scheme of the tunnel, the cavity
is fortified with a thin-walled shell (lining) of a thickness, denoted as ho, and having a radius of the
middle surface R (Figure 1 (b)). Considering the thinness of the shell ho it is assumed that it
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contacts with the massif along its middle surface. The shell has hard contact with the massif. The
massif and the shell materials are characterized by the following constants, representing their
physical and mechanical properties. Poisson’s ratio: v (for the massif), vo (for the shell); shear
modulus: p (for the massif), o (for the shell); density: p (for the massif), po (for the shell).

At the surface of the cavity (Figure 1 (a)) or on the inner surface of the shell (Figure 1 (b)),
there are normal and tangential acting parallel to the z-axis loads that move in the direction of the z-
axis with a constant velocity ¢ (lower than the shear wave propagation velocity in the medium). The
next stage is to determine the SSS of the massif.

To solve the problem, moving cylindrical (r,8,n=z-ct) and Cartesian (x,y,n=2z-ct)
coordinate systems that move together with the load are to be introduced. The motion of the shell in
these coordinate systems is described by equation (1), while the motion of the massif — by equation
(2) (Ukrainets, 2006), (Alekseeva & Ukrainets, 2009):

1- (1—v, Jp,c? (32u0n +1—v0 82u0Tl Jr1+v0 0%U,, +v_08u0r 1l-v, (P B )
2u, m®>  2R? 90> 2R md® R on  2u,h, "V

o%u _ 2 2 2 _
1+vy OUy,  (L=vo)(; _poc’ |0 Uy +iza Uy +i25“0r _ lve M
2R onoo 2 KL, ) On R° 00 R° 00 2u,h,
ou 2 _ 2 A2 _
Vo oy izauoe +h—0V2V2UOr +(1 Vo)poc 0 u(2>r +UL£:—1 Vo (Pr _qr).
R on R° 00 12 21, on R 2u,h,

Here q; and u,, — respective the massif reaction and the displacements of points on the middle
surface of the shell (when r=R Q; =0, where o, — the stresses in the massif), J=n,0,r;
P.(6,n) and P, (6,1) — the intensity of the axial tangential and normal load.

(M2 =M _?)grad divu + M;?V?u = 6°u/on? , 2)

p

where M =c/c,, M, =c/c, — Mach numbers; c, = J(+2u)/p, c, =+/u/p - the speeds of
propagation of compression-expansion and shear waves in the massif, A =2uv/(1-2v); u - vector

displacement of the elastic medium, V? — Laplace operator.
Write u through Lamé potentials ¢, (j =1, 2,3) (Novackij, 1975)

u=grade, + rot((pzen )+ rot rot(cpaen )

transform (2) to the form of
Vi, =M? 8%, /on*, j=12,3. 3)

Here M; =M , M, =M; =M.

Let’s express the components of the medium's SSS in terms of Lameé potentials ¢ .
Components of the vector u in Cartesian (4) and cylindrical (5) coordinate systems:
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Using Hooke’s law, taking into account (4) and (5), expressions for the components of the
stress tensor in Cartesian (6) and cylindrical (7) coordinates can be found
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. = 262@1_62@2 (1+m) 6@3
" r 60on oron r 00on?

87



QazBSQA Xat6apusicsl. Kypsuibic. Ne3 (93), 2024

9 lazq)l _ia(pl_az(pz _m_szaz(pz _{_l 3’0, _iazq)s '
rooor r?> o0 or> 2 om® roromndd r? onoo

Gro

Applying the Fourier transform in n to equations (3), we get
Vie, —m2E’e; =0, j=1,2,3, (8)

where  ¢}(r,0.8)= [@,(r.0n)e™dn, m?=1-M2, m =m
dimensional Laplace operator.

Applying the Fourier transform to (4) — (7) in 1, we obtain expressions for the transforms of
displacements u” and stresses o in Cartesian (I,m=X,y,n) and cylindrical (I,m=r,0,n)
coordinate systems, represented in terms of . Applying the Fourier transform to equations (4) -
(7) in m, expressions for the transforms of displacements u, and stresses o, in Cartesian
(I,m=x,y,m) and cylindrical (I,m=r,0,1) coordinate systems are obtained, represented in terms
of ¢7.

If c<c,,then M, <1 (m, >0). Therefore, the solutions of equations (8) can be presented in
the form of:

9, =0 + P, )

where @Y = iaHan(kjr)e‘“‘*, P = Tgj(&,Q)exp(iyg+(x—h)1lg2 +kj2)d§, K, (kr) -

MacDonald functions, k;, =m,&; a
determined, j=1,2,3.
The solutions (9) yield the subsequent expressions for ¢

g,(¢,¢) — unknown functions and coefficients to be

nj ’

*

. in the Cartesian coordinate system:

®© —xf;
. e j © X—h)f : i
(pj = J;|:? Zanjq)nj +9 j (F;, C)e( v :le ygd(; J (10)

j N=—o0

i
Let’s express the functions g, (¢,5) using the coefficients a,, (j=1,2,3). Considering (10),
let’s use the boundary conditions when x = h:

C+f. ) .
where fj:1/§2+k.2,d>nj:[ ” L1j=123.

Extracting coefficients of €” and equating them to zero, due to the arbitrariness of y, a
system of three equations is derived from which one can deduce

9,60 =A™ Ya,0,. (1)
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Here A, :(2pf —BZ)Z —4p2\[p? —a?\[p? -

P S -l 5 TS JURP R AR
2\/pf—oc2 \/pf—ocz

2
A*21_ '\r:S AlZ' A*zz :_ZAZ—HBZ’ 23 = \/p*—OL \/p*_
s Px —
* A* * ' * A** 2 *x ?

a=MiE B=Mg pP=82+C7, A**=(2p*—B)—49**\/95—02\/&—82
2 g2+ (2/m? —1)2.

Note that A.(p.) — is Rayleigh's determinant, which equals zero when p2, =&*M 2, or at two

points +¢, = 2-1, where M, =c/c, — Mach number, c, - Rayleigh surface wave

velocity (Novackij, 1975). From the latter, it follows that A, (p.) does not equal zero on the real
axisif My <1,0r c<cy.
If ¢ <cy the relations (11), considering (10), will be rewritten as

. | =X . A*- i w |
¢ = J;{ezf Zamd) +e" ZAi'e " Zam@m}eycdq. (12)

3
j n=—» 1=1 n=—o0

Using relation (Yerzhanov & Ajtaliev, 1989)

explyc+ (-] )= 21 Gy i e

we obtain (9) in a cylindrical coordinate system (9)

IED) (a Kakin)+ 1k, r)jg €0, e‘““ch
where 1 (kr) — modified Bessel functions.
If ¢ <cy the last expression, taking into account (11), can be rewritten as

= (o Ko k1) 4 by 1 (k1) )e™. 13)

N=—o0

*
o0

A ot
Here b, _z zaml J A _IA]I q)mlq)nje_h(fI fJ)dC.

1=1 m=—w —0 *

Using (12) and (13), expressions for the displacement transformant u,~ and stress
transformant o; are obtained in Cartesian (I,m=X,y,n) and cylindrical (I,m=r,0,n) coordinate
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systems with unknown coefficients a; (=1 2,3), which are determined from the boundary

conditions on the surface of the cavity r=R
- for a nonreinforced cavity (Figure 1 (a))

o, =P (0,8, c,,=0, o, =P, (6,8), (14)

- for a cavity reinforced by a thin shell (Flgure 1 (b))
U =up, - (15)
Here

0

P/(0.2)= [P0k “an = p, (O)p] (2] p, (6)= Py, pi( jp<meﬁwn j=rm;

o0

Uy (6 Ium (6,m)e ™ "dn, I=m,6,r.

By performing the Fourier transform on (1) concerning n and decomposing the functions
P(6,&) and ug,(06,2) (J=n,r, I =m,6,r) in the Fourier series in 6, the following is obtained:

5 .
€1Ugn, + VaNEoUgng —2ivEolgy = Go(Pnn —Qny, ),
) .
ViNEqUg,, +€5Ugne — 2INUg,, = =G40, (16)

; ; 2
2|V0§0u0nn + 2InuOne +&3Ug, = GO(Pnr — Ay )’

2 2 2 2 2 2 2 2 2
where 7 =ag —g5, €5 =PBg —€5, €; =7Vo 85, & =ER,

=282 +v.an?, B2 =v. 1207, 12 = 2(E2 40’ f 42, €2 = vaEIMY,
h¢ v.R?
Ve =1-v,, v. =1+v,, M, =c/c,, C, ==, Gy =
0 0 00 Ys0 = (Ho/po) 6R2’ ° toh,
U, — the coefficients of decomposition p(,&), ug, (6,&) respectively, in the Fourier series by

the angular coordinate 6 (j=n,r, [=n,0,r). When r=R q, =(c},), (I=7,6,1).

P

nj’

Resolving (16) concerning u,,, (I =n,6,r), one can find:

- (Pnj ~ Oy )
(R —dy )
( Py _qnj)-

o2

=1

Uony = Go

~|

=1

Ugne = Go

G

c
Il

onr

1M 1Mo 11

00|Oo OQ|O’)
=] 2

Here 5, =5, = (6:6,85) —(6:8:)" —(6,8,)" (8284 ) +28,E,8s,
8y =(e8: ) —E2, 8, =8, —Eael, O =ile2E, ~E,E5)
Oy :6112’ By = ( 183) §2' o3 Zi(alzél_‘:zég),
81=-8,3 O8,=-3p O=(e8,) —E]
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& =2n, §,=2vo&,, & =Vv.&N, B, = P P.=Pe=0, Py=PR,, q,= Unnr iz =Une>
qn3 = an '

By substituting the appropriate expressions into (14) or (15) and equating the coefficients of
the Fourier-Bessel series at €™, obtain an infinite system (n=0,%+1,%2,...) linear algebraic
equations for determining coefficients a; (j=1,2,3). This system of equations has a unique
solution if the corresponding determinant A, (&,c) = 0 is nonzero for each value of n. Research on
determinants A_(&,c), has demonstrated that for an unsupported cavity (Figure 1 (a)) this
requirement can be fulfilled by satisfying the condition ¢ <c,. However, for a supported cavity
(Figure 1 (9)), the speed (¢ < ¢ ) of load movement must be lower than its critical speeds: ¢ < c,,.-
The values of the critical speeds ¢, are determined from the dispersion equations A (&,c) =0 and
may be less than the Rayleigh speed cr. As studies based on numerical calculations show, the lowest
critical speed of the load corresponds to the number n =0 (minc,,. =c . )-

We can compute the displacements u, and stresses o, (I,m=r,0,m) in the massif by
determining the coefficients a,; ( ] =1 2,3) and applying the inverse Fourier transform.

4.2 NUMERICAL EXPERIMENTS

Apply the obtained solution to calculate the SSS of the ground surface. For example, consider
an unsupported and supported circular cylindrical tunnel with a thin cast iron lining (ho = 0.05 m;
vo = 0.3, po = 5.77-10'° Pa, po = 7.2-10%kg/m?), with a radius of R = 1 m, passing through siltstone
(v=0.2, ©1=2532-10°Pa, p =2.5-10% kg/m?, cs=1006.4 m/s, cr =917 m/s) at a shallow depth
h=2R.

An axially symmetric normal load P (pressure of a moving body on the surface of the tunnel)
and an axially symmetric tangential load P;, (the result of the friction forces acting on the surface of
the tunnel from the moving object), uniformly applied in the interval |n| < lo = 0.2R, moving along
the tunnel at a constant speed ¢ = 100 m/s. In this case R, =1, P, =0, N=%1,+2,., j=m,r. Let

the intensity of the normal load be Q (Pa), and the intensity of the tangential load — 0.2Q. Then
p; (&)=—2Qsin(&l,)/E, p(&)=0,4Qsin(sl,)/& . If selected Q in such a way that the overall normal

load throughout the length 2lo of the load section is equal to an equivalent concentrated radial
normal load of intensity P (N/m), i.e. Q = P*/2l,, obtain

p, (&)=—P=sin(El,)/(El,), p;(g)=0,2Psin(&l,)/(El,)-

In Figure 2 the curves of axial displacements u; =u n/P° (M) and normal stresses

"y =0, /P (where P*=P™”/m, Pa) of the ground surface are shown in the xn coordinate plane.

The curves labeled 1 represent the unsupported tunnel, while the curves labeled 2 represent the
tunnel reinforced with a thin-walled cast iron lining.

(e3
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Figure 2 — Changes in axial displacements (a) and normal stresses (b) of the ground surface (authors’ materials).

From the analysis of the behaviour of the curves, it follows that in the case of a tunnel
reinforced with a cast iron lining extreme axial displacements u, and normal stresses oy, oOf the
ground surface are significantly smaller in absolute magnitude than in the case of an unsupported
tunnel. For any of the considered tunnels, when n ~ 0 displacement u,=0, while the stresses oy
have the maximum value. When |n| increases, |un| increase and reach the extreme values when
In| = 0.7R. Moreover, when |n| ~-0.7R u, <0, and when |n| = 0.7R uy, >0 and are almost 2 times
the value of |uy|, found when n ~ -0.7R. With a further increase in |n| there is a damping effect on
the displacement of the earth's surface, represented by |un|. As Figure 2 (b) shows in the interval
In| < 0.8R there is a decrease in tensile stress ony from its maximum value to zero. With increasing
in |n|, there is an increase in absolute value from zero to certain values of compressive stresses oy,
(smaller than the maximum stress oy Occurring when n = 0) and their further decay.

The graphs obtained from mentally visualizing the deformation of the ground surface under
the influence of these loads support this representation. As the numerical results of the study are
unprecedented in the existing literature, no comparison with similar results is made here. The
validity of these results is ensured by the correct formulation of the problem, the application of
accurate mathematical methods of elasticity theory in its analytical solution, the rigor of the
mathematical apparatus used, and the high degree of satisfaction of boundary conditions in the
numerical realization of the set problem.

5 CONCLUSIONS

The model problem for an unsupported or supported circular cylindrical tunnel with a thin
lining of shallow embedment under the action of transport loads, including normal and tangential
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loads parallel to the tunnel axis has been solved. This action occurs when taking into account the
frictional forces that arise when transport or other objects move through a tunnel.

In contrast to similar model problems for deep-buried transport tunnels, where the massif is
typically represented as an elastic space, this model takes into account the impact of waves reflected
by the ground surface and arising during the movement of loads on both the tunnel structure and the
surrounding massif.

Computer programs developed from the obtained solution were used to conduct a numerical
study on the influence of shallow tunnel lining on the SSS of the ground surface. The study
involved the application of axisymmetric normal and tangential loads, uniformly distributed within
a certain interval and moving at a constant speed. The analysis of the calculation results shows that
the reinforcement of the tunnel with the lining leads to a significant reduction of the dynamic
impact of the transport loads on the ground surface. The vibration of the ground surface, which can
negatively affect the seismic resistance of nearby buildings and structures, depends on the physical
and mechanical properties of the material and the thickness of the tunnel lining. Therefore, the
choice of material and its thickness can reduce this effect. The obtained solution allows us to study
the dynamics of a circular cylindrical tunnel at any depth of its embedment and various permissible
speeds of transport loads.
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